
picoSQL

Query language reference guide

Release 2.0.2

Copyright © 2003 Picosoft s.r.l. - Corso Italia 178 - Pisa Italy
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation.
The GNU Free Documentation License is available from www.gnu.org.

picoSQL - SQL language 1/26

picoSQL - Query language reference manual

This manual presents descriptions of all SQL commands supported by picoSQL as well as syntax
and description.
SQL supported by picoSQL comes from ANSI-92 e in particular from CAE (Common Application
Environment) Specification "Structured Query Language" X/open of 1992. There are some
limitations and some extensions that will be evidenced.

1) Syntax conventions

The following conventions are used in the SQL syntax description.

 All keywords are shown in upper case, while items that the user must replace with identifiers or
expressions are shown in lower case. This is only a convention to better distinguish different
parts of a command. picoSQL do not distinguish between upper and lower case, as much in the
keywords as in the user's identifiers, so the command "SELECT MYTAB ..." is equals to "Select
Mytab ..." and to "select mytab ...".

 Optional portions of a command are enclosed by square brackets [].
 Alternative options are separated by vertical bars.
 Curly braces enclose alternative options, separated by a vertical bar, between which only one

must be chosen. Warning! Curly braces are also part of the language; they are used as escape
sequences and in this case they must be written as they appear. In the continuation, the use of
curly braces as escape sequences is evidenced to avoid ambiguities.

 Lists are shown with a list element followed by ", ...". This means that one or more list elements
are allowed and if more than one is specified, the must be separated by commas.

 All the other characters, as parenthesis for example, are SQL syntax elements and must be
written as they appear.

2) Language elements

In this paragraph the basic elements of SQL language are listed.

numbers A number is any sequence of digits followed by an optional decimal part and
preceded by an optional negative sign. Exponential notation is allowed
postplacing an 'E' and then an exponent. For example:

523
­43.001
7.8E5
3.4E­3

strings A string is any sequence of characters enclosed in single or double quotes
(SQL standard allows only single quotes). A quote is represented inside the
string by two adjacent quotes. The following strings are equivalent.

"L'opera"
'L''opera'

picoSQL - SQL language 2/26

escape sequences Dates are not numbers nor strings, so an escape sequence is needed to identify
a date type. picoSQL use curly braces to enclose these values. Allowed escape
sequences are:

{d 'YYYY­MM­DD'} to represent a date;
{t 'hh:mm:ss.uuu'} to represent a time;
{ts 'YYYY­MM­DD hh:mm:ss.uuu'} to represent a timestamp;

literal values Any string value, numeric value or date value is called literal value.
dynamic parameters When using picoSQL in a procedural language, some values of a query are

often contained in a host variable. Because of this, you can prepare a query
using the question mark character (?) instead of a literal value. In these cases
of course, you need to supply the correct value before executing the query
using an appropriate function call (SQLBindParameter).

identifiers An identifier is a name who identify a database element, like a table or a table
attribute. The name can be any sequence of characters A through Z, a through
z, 0 through 9 and underscore (_). The first character must be a letter.
picoSQL do not distinguish between upper and lower case. An identifier name
cannot be a keyword.

separators A SQL command is a sequence of words separated by special characters,
called separators. There are two kinds of separators. The first type is used only
to separate the words and has no special meaning. Separators of this kind are
the blank character (ASCII 32), tabulator (ASCII 9), carriage return (ASCII
13) and new line (ASCII 10).
The second type of separators has a special meaning. Separators of this kind
are the following:

, () < > . = * + ­ / ?

and the following characters couples:

<> != >= <=

3) Data types

PicoSQL manages the following data types.

CHAR(dimension)
VARCHAR(dimension)

Character data of maximum dimension size. The maximum
size allowed is 32767. In the current release, there is no
difference between these two types.

NUMERIC(precision[, scale]) A decimal number with precision total digits and with scale of
the digits after the decimal points. In the current release the
maximum precision is 18.
The space required by an attribute of this kind can be
computed by the following formula.

required-space = precision / 2 + 1

where the division is an integer division.

picoSQL - SQL language 3/26

SERIAL An integer 11 digits long, stored with the same format as a
NUMERIC attribute. This number autoincrement itself every
INSERT/REPLACE statement execution, starting from 1 and
growing by 1. You can assign a predefined value to attributes
of this type; if the assigned value is greater than any other in
the table, this value became the reference for next insertions.
However, a SERIAL attribute can be modified using an
UPDATE statement.

SMALLINT An integer that requires 2 bytes and can cantain values
between -32767 and 32767. The number -32768 is interpreted
as NULL.
Warning! number of this type are stored in machine
dependent format.

INTEGER
INT

An integer that requires 4 bytes and can cantain values
between -2147483647 e 2147483647. The number
-2147483648 is interpreted as NULL. INTEGER and INT are
synonyms.
Warning! number of this type are stored in machine
dependent format.

REAL A single precision floating point number. It requires 4 bytes.
Warning! number of this type are stored in machine
dependent format. The smaller values (FLT_MIN) is
interpreted as NULL.

DOUBLE A double precision floating point number. It requires 8 bytes.
Warning! number of this type are stored in machine
dependent format. The smaller values (DBL_MIN) is
interpreted as NULL.

DATE A date. It requires 5 bytes. To specify a data you can use the
appropriate escape sequence or also a string in the following
format:

'YYYY-MM-DD'

TIME A time. It requires 5 bytes.To specify a time you can use the
appropriate escape sequence or also a string in the following
format:

'hh:mm:ss.uuu'

TIMESTAMP A timestamp. It requires 9 bytes. To specify a timestamp you
can use the appropriate escape sequence or also a string in the
following format:

'YYYY-MM-DD hh:mm:ss.uuu'

BLOB A binary large object whose size range from 0 to 2147483648
bytes. Allocation is done in block 1024 bytes long. picoSQL
load the full blob in main memory, so you must sure to have
enaugh free memory.

CLOB This type is like the BLOB but it can contain only text data.

picoSQL - SQL language 4/26

Each of these types can contain a conventional value, called NULL, that indicate that the value is
unknown or not applicable to the context. When you insert a rows without specifying all values, for
example, in the unspecified attributes go the NULL value.

4) Expressions

An expression is a single value that can also be computed using some operations. We call 'numeric
expression' an expression whose result is a number. A numeric expression is formed from numeric
literals, numeric dynamic parameters, numeric columns identifiers and numeric function results (see
in the continuation). You can combine all this elements using the 4 arithmetic operators and get a
new numeric expression. The allowed operators are, in the precedence order:

­ unary minus;
* / multiplicatoin and division;
+ ­ addition and subtraction.

Operataions with the same precedence are executed left to right. The execution precedence order
can be altered using parenthesis.

We call 'string expression' an expression whose result is a string. A string expression is formed
from string literals, string dynamic parameters, string columns identifiers and string function results
(see in the continuation).

We call 'date/time expression' an expression whose result is a time, a data or a timestamp. A time
expression is formed from escape sequences, dynamic parameters, time/data/timestamp columns
identifiers and time/data/timestamp function results (see in the continuation).
In the current release, additions and subtractions between a number and a time expressions are
allowed and the result is a new time expression equal to the original one plus/less the seconds
specified by the number.

5) Functions

picoSQL has a group of built-in functions to return data from database. Function are of two kind:
simple functions and aggregate functions.
Aggregate functions summarize data over a group of rows from database and return numeric, string
or time values.
Simple functions execute computation on one ore more arguments and act on numeric, string or
date/time values. Simple functions can be numeric functions, string functions or date/time
functions.

5.1) Aggregate functions

COUNT ([DISTINCT] column-name)
COUNT(*)

Return the number of rows in each group. If the
DISTINCT column-name clause is specified, the function
return the number of different values in the specified
column.

picoSQL - SQL language 5/26

MIN(column-name) Return the minimum value found in the specified column
of each group.

MAX(column-name) Return the maximum value found in the specified column
of each group.

SUM(column-name) Return the total of the columns for each group.
The specified column type must be numeric.

AVG(column-name) Return the average of the columns for each group.
The specified column type must be numeric.

☞ picoSQL do not allow to use an aggregate function in an arithmetic expression.

5.2 Numeric functions

In the following descriptions we denote a numeric expression as num-expr or num-expr-1, num-
expr-2 etc.

ABS(num-expr) Returns the absolute value of the numeric expression.
ACOS(num-expr) Returns the arc-cosine of the numeric expression.
ASIN(num-expr) Returns the arc-sine of the numeric expression.
ATAN(num-expr) Returns the arc-tangent of the numeric expression.
CEILING(num-expr) Returns the smallest integer not less than the numeric

expression.
COS(num-expr) Returns the cosine of the numeric expression.
COT(num-expr) Returns the cotangent of the numeric expression.
EXP(num-expr) Returns the exponential function of the numeric

expression.
FLOOR(num-expr) Returns the largest integer not greater than the numeric

expression.
LOG(num-expr) Returns the natural logarithm of the numeric expression.
LOG10(num-expr) Returns the logarithm base 10 of the numeric expression.
ROUND (num-expr-1, num-expr-2) Rounds num-expr-1 to num-expr-2 places after the

decimal point.
SIGN(num-expr) Returns -1 if the numeric exprssion is less than 0, 1 if the

numeric expression is greater than 0 or 0 if the numeric
expression is equal to 0.

SIN(num-expr) Returns the sine of the numeric expression.
SQRT(num-expr) Returns the square roor of the numeric expression.
TAN(num-expr) Returns the tangent of the numeric expression.
TRUNCATE (num-expr-1, num-expr-2) Truncate num-expr-1 at num-expr-2 places after the

decimal point.

5.3) String functions

In the following descriptions, we denote a string expression as string or string-1, string-2 etc.

picoSQL - SQL language 6/26

ASCII(string) Returns a numeric value corresponding to the
ASCII value of the first character of string..

CHAR(num-expr) Returns a string 1 character long whose ASCII
value is equal to num-expr.

CONCAT(string-1, string-2) Concatenates two strings into one large string.
CONVERT(num-expr,SQL_CHAR) Returns a string containing the representation of

num-expr.
CONVERT(string,SQL_DOUBLE) Converts a string in a number. If the value

contained in string cannot be interpreted as a
number, then this function returns 0.

CURRENT_TIMESTAMP(format-string) Returns a string containing a timestamp of the
current date and time. The result string has a format
as specified in format-string. The following
characters has a special meaning in format-string:

Y year digit;
M month digit;
D day digit;
H hour digit;
N minute digit;
S second digit;
T millisecond digit (always 0).

All the other characters are transcripted literally.
You can get the standard timestamp format with the
following format-string:

'YYYY­MM­DD HH:NN:SS.TTT'
LCASE(string)
LOWER(string)

Converts all characters in string to lower case.
LCASE and LOWER are synonyms.

LENGTH(string) Returns the length of string.
LOCATE(string-1, string-2, num-expr) Returns the character offset (base 1) into the string

string-1 of the first occurrence of the string string-
2, starting the search at the offset num-expr. If the
string is not found, 0 is returned.

LTRIM(string) Returns string with leading blanks removed.
RTRIM(string) Returns string with trailing blanks removed.
SPACE(num-expr) Returns a string num-expr blank characters long.
SUBSTRING(string,

num-expr-1, num-expr-2)
Returns the substring of string starting at the given
num-expr-1 start position (origin 1) and num-expr-2
characters long.

UCASE(string)
UPPER(string)

Converts all characters in string to upper case.
UCASE and UPPER are synonyms.

5.4) Date/time functions

The arguments of the following function must be of DATE type, TIME type or TIMESTAMP type.
String expression are not allowed as arguments while escape sequences are allowed.

picoSQL - SQL language 7/26

DAYOFMONTH(timestamp) Returns a number from 1 to 31 corresponding to the month of the
given timestamp.

HOUR(timestamp) Returns a number from 0 to 23 corresponding to the hour of the
given timestamp.

MILLISECOND(timestamp) Returns a number from 0 to 999 corresponding to the milliseconds
of the given timestamp.

MINUTE(timestamp) Returns a number from 0 to 59 corresponding to the minute of the
given timestamp.

MONTH(timestamp) Returns a number from 1 to 12 corresponding to the month of the
given timestamp.

NOW() Returns a timestamp with the current date and time.
SECOND(timestamp) Returns a number from 0 to 59 corresponding to the seconds of the

given timestamp.
YEAR(timestamp) Returns a number from 1 to 9999 corresponding to the year of the

given timestamp.

6) Search conditions

Search conditions are formed from one or more predicates, combined one another using the logical
operators AND, OR and NOT. Conditions are used as to choose a subset of the rows from one or
more tables. A search condition is evaluated any time a rows is read and the rows is returned if and
only if the result of condition is TRUE.

☞ SQL standard use a three valued logic, so every condition evaluates as one of TRUE, FALSE or
UNKNOWN. The truth tables of this kind of logic are the following:

AND TRUE FALSE UNKN.

TRUE TRUE FALSE UNKN.

FALSE FALSE FALSE FALSE

UNKN. UNKN. FALSE UNKN.

OR TRUE FALSO UNKN.

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKN.

UNKN. TRUE UNKN. UNKN.

NOT

TRUE FALSE

FALSE TRUE

UNKN. UNKN.

picoSQL use a more simple boolean logic with only the TRUE and FALSE values. This behaviour
implies only one difference between picoSQL and SQL standard: picoSQL evaluates TRUE an
equality between two NULL values while standard SQL does not.

picoSQL - SQL language 8/26

Two operands in a predicate must be of comparable types.

6.1) Comparison predicate

A comparison predicate is formed from 2 expression compared by a comparison operator as
follows:

expression-1 comparison-operator expression-2

 Comparison operators allowed are the following:

= equal to
<> (or !=) not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

6.2) BETWEEN predicate

A BETWEEN predicate verifies if a value is contained between two values; the syntax is:

expression-1 [NOT] BETWEEN expression-2 AND expression-3

This predicate, without the NOT operator, is equivalent to:

espressione-1 >= espressione-2 AND espressione-1 <= espressione-3

NOT operator reverses the meaning of the condition.

6.3) IN predicate

IN predicate compare an expression with a group of values; the syntax is:

expression [NOT] IN (value-1[,value-2] ...)

This predicate, without the NOT operator, is equivalent to:

expression = value-1 [OR expression = value-2] ...

NOT operator reverses the meaning of the condition.

6.4) LIKE predicate

LIKE predicate allows to search some string data using wild cards. The syntax is:

string-expression [NOT] LIKE pattern

picoSQL - SQL language 9/26

The pattern may contain any number of wild cards. The wild cards are:

 underscore (_) match any one character;
 percent (%) match any string of 0 or more characters;
 back slash (\) prevent a wild card from having its special meaning;

For example, the pattern 'B%' corresponds to any value starting with the B character, while the
pattern 'B__' corresponds any value starting with the B character and three characters long.

NOT operator reverses the meaning of the condition.

6.5) NULL predicate

This predicate verifies if an expression is null or not. The syntax is:

expression IS [NOT] NULL

NOT operator reverses the meaning of the condition.
In statndard SQL, this is the only way to verify if an expression has NULL value or not. PicoSQL
instead returns TRUE also comparing two columns containing NULL value.

6.6) EXISTS predicate

This predicate allows to verify the existence at least a rows in any table that satisfies some
conditions. The syntax is:

EXISTS (subquery)

The result of predicate is TRUE if the subquery result contains at least one row, FALSE otherwise.

7) Command list

This section includes an alphabetical listing of all SQL statements supported by the current release
of picoSQL.

picoSQL - SQL language 10/26

ALTER TABLE

Syntax: Format 1:

ALTER TABLE table-name RENAME new-table-name

Format 2:

ALTER TABLE table-name ADD [COLUMN] column-name data-definition

Format 3:

ALTER TABLE table-name DROP [COLUMN] column-name

Purpose: Allows to modify a table definition.

See also: CREATE TABLE, DROP INDEX

Description: This command changes table structure without modifying the content.

Format 1 allows to change the table name.

Format 2 allows to add a new column to a table. The column is appended at the end of
the row. If the table already has some rows, new column will be initialized to NULL.
Column name must be univoque in the table. COLUMN clause has no effects.

Format 3 allows to drop a column from a table. The column to drop can contain data
and in such case, this data are lost. The column to drop cannot be part of an index; in
this case you need to drop the index before and then the column.

picoSQL - SQL language 11/26

CALL

Syntax: CALL procedure-name ([argument[, argument]...])

Purpose: Allows to invoke a stored procedure

See also: SELECT

Description: This statement allows the invocation of a stored procedure previously created. The
argument number can be fixed or variable, depending on the procedure declaration.
Arguments are expressions, as in a SELECT statement.
Like any other SQL statement, CALL statement returns only a success or error code;
it can generate a result set, like a SELECT statement, or it can generate nothing, like
statements INSERT, UPDATE and DELETE. Introduced from release 2.0.

picoSQL - SQL language 12/26

CREATE INDEX

Syntax: CREATE [UNIQUE] INDEX index-name
ON table-name
(column-name [ASC|DESC] [, column-name [ASC|DESC]] ...)

Purpose: Allows the creation of an index on the specified table. Indexes are important to
improve performances.

See also: DROP

Description: This statement creates an index on the specified columns of the specified table.
Indexes are automatically used by picoSQL to improve performances in the searching
and when an ordering is selected using the ORDER BY clause.

An index can be created on a table in any time, also if the table is not empty.

The UNIQUE clause ensures that there will not be two rows in the table with the same
values in all the columns of the index.

The index-name is not used by picoSQL, but it must be specified for compatibility
with SQL standard. Every index has a conventional name, formed in the following
way:

table-name_progressive-number

The progressive number start from 02 because number 01 is reserved to primary key.
The index conventional name must be used in the DROP INDEX statement to drop an
existant index.
If you drop the nth index, the (n+1)th index becomes the nth and so on.

An index can be formed from 8 parts, and a part can be formed from more than one
adjacent columns of non-native type (CHAR, VARCHAR, NUMERIC, DATE,
TIMESTAMP). An index can be altogether 255 characters long.

The DESC clause is not implemented in the current release.

picoSQL - SQL language 13/26

CREATE TABLE

Syntax: CREATE TABLE table-name
(column-name data-definition [PRIMARY KEY]
[, column-name data-definition [PRIMARY KEY]] ...)
[, PRIMARY KEY (column-name [,column-name]...)]

Purpose: Allows the creation of a database table.

See also: DROP, CREATE INDEX

Description: This statement create a new table on the database.

The PRIMARY KEY clause, specified after a column declaration, cause this column
to become a unique index on the table. Differently from the SQL standard, this clause
can be part of more than one columns, creating in such way a primary index
composed from more than one columns.

The PRIMARY KEY clause, specified after the declaration of all the columns, allows
to specify a primary index composed by more than one columns in any order.
It is not allowed to use both the formats.

picoSQL - SQL language 14/26

CREATE VIEW

Syntax: CREATE VIEW view-name [(column-name [, column-name] ...)]
AS simple-query [WITH CHECK OPTION]

Purpose: Allows the creation of a logical view.

See also: DROP, SELECT

Description: This statement creates a new logical view on the database. A logical view is useful to
give a different perspective on the data even though it is not stored in that way.
Practically, a logical view is a query, made using a SELECT statement, that is stored
and can be used as a real table. However the view do not exists phisically, so it is
newly computed for any query. The SELECT statement cannot have aggregate
functions nor ORDER BY or GROUP BY clauses.

A logical view can inherit the columns name from the names of the original columns
or you can specify new names during the creation; in the latter case the number of
specified names must correspond to the number of column returned by the query.

Creating a view that join two or more tables, picoSQL requires the join condition
expressed with the appropriate join-clause (see the SELECT statement).

A view without joins can be update like any other table. If the clause WITH CHECK
OPTION is specified, any update or insert to the view is rejected if do not meet the
criteria of the view defined by its SELECT statement.

picoSQL - SQL language 15/26

DELETE

Syntax: DELETE FROM table-name
 [WHERE {search-condition |CURRENT OF cursor-name}]

Purpose: Allows to delete an arbitrary number of rows from a table.

See also: INSERT, UPDATE, SELECT

Description: This statement deletes all the rows from the named table that satisfy the search
condition. If the WHERE clause is not specified, all the rows from the table are
deleted. The CURRENT OF clause can be used, instead of the search condition, to
delete only the current row read by a cursor. However, this clause can be used only
from a program language because a cursor name can be gotten or set only calling an
API (SQLGetCursorName and SQLSetCursorName respectively).

picoSQL - SQL language 16/26

DROP

Syntax: DROP { INDEX index-name | TABLE table-name | VIEW view-name }

Purpose: Allows to drop an index, a table or a logical view.

See also: CREATE INDEX, CREATE TABLE, CREATE VIEW

Description: This statement drop an index, a table or a view from the database.

Dropping an index, the freed space remains allocated and it is use for the remaining
indexes or for new indexes.
Dropping a table, the freed space is immediately released to the operating system and
can be used by other application too.
Dropping a view, the small freed space can be reused only for creating other views.

picoSQL - SQL language 17/26

INSERT

Syntax: Format 1:

INSERT INTO table-name [(column-name [, column-name]...)]
VALUES (expression |NULL [, expression | NULL] ...)

Format 2:

INSERT INTO table-name [(column-name [, column-name]...)] query
Purpose: Allows the insertion of one or more rows in a table.

See also: REPLACE, DELETE, SELECT

Description: This command allows to insert one o more rows in the named table.
Format 1 allows to insert only one row with the specified values after the VALUES
clause. If the optional column names list is specified, expressions after the VALUES
clause are in positional correspondance with the columns name (the first with the first,
the second with the second and so on). If the columns list does not comprise all the
attribute defined in the table, the value NULL is put in the missing attributes.
If the optional column names list is not specified, all the attributes of the table must be
specified after the VALUES clause: the corrispondence between the table attributes
and the experssion is done by position. The row is inserted in an arbitrary position.

Format 2 allows to get the expression to insert from a SELECT statement. Also in this
case there is positional correspondance between specified attributes, or table
attributes, and the result expressions from the query.

If one or more attributes of the table are declared as SERIAL type and they contain
the NULL value, they will receive a sequential number. Assigned values can be
obtained using the SELECT SERIAL statement (introduced from release 2.0) on
condition to use the same statement handle used for INSERT statement.

picoSQL - SQL language 18/26

REPLACE

Syntax: Format 1:

REPLACE INTO table-name [(column-name [, column-name]...)]
VALUES (expression |NULL [, expression | NULL] ...)

Format 2:

REPLACE INTO table-name [(column-name [, column-name]...)] query
Purpose: Allows to insert or rewrite one or more rows in the named table.

See also: INSERT, DELETE

Description: This command is simular to the INSERT statement, the difference is that if the row
insertion cannot be done because of one (and only one) unique index duplication,
REPLACE rewrite the full row. From a logical point of view REPLACE is equivalent
to execute a DELETE statement based on the first unique index and then an INSERT
statement. However, the REPLACE command is atomic and much more efficient than
executin DELETE and INSERT statement. You can get a duplicate index error only if
the table has more than one unique index and if the REPLACE cause the duplication
of an index successive the first one.

picoSQL - SQL language 19/26

SELECT

Syntax: Format 1:
SELECT [ALL | DISTINCT] expression-list

FROM { table-name [[AS] alias][, table-name [[AS] alias]] ... |
join-clause }

[WHERE search-condition]
[GROUP BY column-name [, column-name] ...]
[HAVING search-condition]
[UNION select-statement]
[ORDER BY {integer [ASC|DESC]|expression [ASC | DESC]}

 [, {integer [ASC|DESC]|expression [ASC | DESC]}]...]
[LIMIT integer]
[OFFSET integer]

Format 2:

SELECT expression-list
FROM table-name
[WHERE search-condition]
FOR UPDATE

Format 3 (release >= 2.0):

SELECT SERIAL
Purpose: Allows to query the database.

Vedi anche: CREATE VIEW, UNION, INSERT

Descrizione: This statement is the more complex one because it is the only one that allows to query
the database.
For format 3 use, see the INSERT statement.
Format 2 is a subset of format 1 with the FOR UPDATE clause and it is used to lock
the read row. The row is unlocked when the next row is read or the cursor is closed.
The format 1 clauses are the following.

ALL | DISTINCT
If the DISTINCT clause is specified, duplicate output rows are eliminated. This is
called 'projection' of the result of the command. Pay attention that to eliminate the
duplicate rows, picoSQL execute a sort of the output rows and this operation can take
significantly longer to execute, especially the number of retrived rows is very high.
The ALL clause instead returns all the rows and this also the default behaviour.

expression-list
expression-list specifies what will be retrived from the database. It has the following
form:

{ * | expression [[AS] alias-name] [, expression [[AS] alias-name]]... }

picoSQL - SQL language 20/26

If asterisk (*) is specified, it is expanded to select all columns of all tables in the
FROM clause. Aggregate functions are allowed in the expression list.

Alias names can be used throughout the query to represent the aliased expression.
Alias names are usually displayed by interactive programs, at the top of each column
of output from the SELECT statement.
FROM
Specifies the tables list from which the data are retrieved. When data are retrieved
from more than one table, usually one or more join conditions must be specified. A
join reduces the result set based on a condition that bind a column from one table to a
column on another table. PicoSQL allows two methods to specify a join:

 you can put the join conditions together the search conditions after the WHERE
clause (see in the continuation) ;

 you can specify the join condition in the FROM clause directly with an appropriate
syntax.

If you use the former method, the FROM clause is only a list of table names. Alias
names are necessary to distinguish between table instances when referencing the same
table more than once in the same query (self joins).

The latter method is more complex, but it distinguish the join conditions from the
search conditions and it allows the outer joins. The join-clause syntax is the
following:

table-name [[AS] alias] {INNER | LEFT OUTER| RIGHT OUTER}
 JOIN {table-name [[AS] alias] | join-clause}
 ON join-condition

This syntax allows to specify any number of joins, also of different types, by nesting
the join-clause one in another.

If you put the join conditions after the WHERE clause or you use the join clause with
the INNER JOIN option, you get the same results but performances may vary. Infact,
in the former case picoSQL choose the optimal scanning table order to minimize the
number of reads, in the latter case the scanning tables order is specified by the join
clause itself.

WHERE
Specifies a search-condition that restrict the rows that will be selected from the tables.
Also the join conditions can be specified in this clause. See "Search conditions".

GROUP BY
Group multiple rows together from the database. GROUP BY expressions must also
appear in the select list. The result of the quesry contains one row for each distinct set
of values in the named columns. Aggregate functions can then be applied to these
groups to get meaningful results.

HAVING
Restricts which groups will be selected based on the group values and not on the
individual rows values. The HAVING clause can only be used if the command has a

picoSQL - SQL language 21/26

GROUP BY clause.

ORDER BY
Sort the results of a query. Each item in the ORDER BY list can be labeled as ASC
for ascending order or DESC for descending order. Ascending is assumed if neither is
specified. If the expression is an integer N, then the query results will be sorted by the
N'th itm in the select list.

LIMIT
Limits the number of retrieved rows to the number specified as argument. If the total
number of selected rows is less than the number specified as argument, this clause has
no effects.

OFFSET
Specifies the offset of the first row to return. If the total number of selected rows is
less than the number specified as argument, the result is a no data found error.

picoSQL - SQL language 22/26

UNION

Syntax: select-without-order-by UNION [ALL] select- without-order-by
[UNION [ALL] select- without-order-by] ...
[ORDER BY integer [ASC | DESC][, integer [ASC | DESC]] ...]

Purpose: To combine the results of two or more select statements.

See alse: SELECT

Description: The results of several SELECT commands can be combined into a larger result using
UNION. The component SELECT commands must each have the same number of
items of the same type in the select list and cannot contain an ORDER BY clause.
UNION statement eliminates duplicate rows: the ALL clause retains duplicate rows.
The ORDER BY clause is analogous to that one used in the SELECT statement but
allows to specify only integer numbers that specify the position of the columns to be
sorted.

picoSQL - SQL language 23/26

UPDATE

Syntax: UPDATE table-name
SET column-name = {expression | NULL}

[, column-name = {expression | NULL}] ...
[WHERE {search-condition|CURRENT OF cursor-name}]

Purpose: To modify one or more rows of a table.

See also: INSERT, DELETE, SELECT

Description: This command is used to modify rows of one table. Each named column is set to the
value of the expression (or NULL) on the right side of the equal sign. Even column-
name can be used in the expression, the old value will be used.
WHERE clause allows to modify only those rows which satisfy the search condition.
If the WHERE clause is not specified, all the rows in the table will be updated. The
CURRENT OF clause can be used, instead of the search condition, to update only the
current row read by a cursor. However, this clause can be used only from a program
language because a cursor name can be gotten or set only calling an API
(SQLGetCursorName and SQLSetCursorName respectively).

picoSQL - SQL language 24/26

8) Query optimizer

picoSQL use a query optimizer which find the best way to satisfy the required queries. Only two
read startegies are implemented, the sequential scanning of the whole table and the use of an
appropriate index.
picoSQL find the best startegy analyzing the search conditions, so it is very important to define
appropriate indexes and to use search condition that can use them, especially on large tables.
To show, in a simple way, how picoSQL works, we suppose now to have a table with only one
index of a single column, whose name is I.

The query optimizer analizes the search condition only in a formal way, that is without taking in
consideration the effective values neither the values really stored in the table. To understand why it
acts in this way, it must consider that often the queries contain dynamic parameter, as in the
following example:

I = ?

This query can be executed more than one times, substituting a different value in place of the
question mark. Clearly in such case, it is more efficient to analize the query only one time and to
find a searching strategy that is good for any parameter value.
To repeat the analisys each time the value change is more expensive and usually do not improve the
strategy.
On this base, picoSQL is able to find a good search index, if one exists.

To use an index for searching some data, the search condition must characterize one or more
exhaustive intervals on the columns of the index, containing all the required rows, as in the
following example:

I < 5

Because the query optimizer do not consider the data on the table, sometimes the use of an index do
not improve the performances: for example, if the column I contains only values that are less than 5,
the previous search condition do not limit the number of required rows, so a sequential scanning
would be more efficient.

To put any condition in AND to a condition that characterize an exhaustive interval, do not
influence the goodness of an index, so, from the optimizer point of view, the following condition is
as good as the previous one.

I < 5 AND A > 10

Things are different changing the AND operator with the OR operator. In the following condition:

I < 5 OR A > 10

the condition on the index do not characterize all the rows required, so the interval is not
exhaustive and the use of the index is not useful. To have an index defined on the A columns do not
change the situation because not even A characterize an exhaustive interval. To read both the
indexes, eliminating the duplicate rows, is expensive and can cause to scanning the whole table two
times in the worst case. So, in such situations, the optimizer prefers to scan the whole table one
time.

picoSQL - SQL language 25/26

From this observation, we can derive a simple rule of thumb: if you use the OR operator, probably
the whole table must be scanned. However, this is not true for any query: in some cases the
optimizer is able to find exhaustive intervals also if there are OR operator in the search condition, as
in the following example:

I < 5 OR I > 10

In this case there are two intervals, but they contain all the required rows. picoSQL is able to take
advantage of indexes when there are more than one exhaustive interval, also if they are overlapped,
as in the following case:

I > 5 OR I > 10

When an index is composed by more than one column, the theory is the same but to understand if
the optimizer can take advantage of the use of an index is more difficult.
The optimzer can take advantage of the nth part of a composed index if n = 1 or if the optimizer can
take advantage of the (n - 1)th part. We suppose now to have a composed index on the columns
named I, J and K. Lets look the following search conditions.

I > 5 AND J < 10 AND K = 4
I > 5 AND K = 4
K = 4

In the first search condition the optimizer can take advantage of all parts of the index, in the second
one the optimizer can take advantage of only the first part of the index while in the third one the
optimizer cannot use the index at all.
Now we can combine this new rule with the previous one to understand if an index can be used or
not. Lets look the following search conditions.

(I = 5 AND J = 10 AND K = 4) OR (I = 6 AND J = 11 AND K = 5)
(I = 5 AND J = 10 AND K > 4) OR (I = 5 AND J > 10) OR I > 5

In the first one the optimizer can take advantage of all three part of the index while in the second
one the optimizer can take advantage of only the part on column I; in fact in this case J and K can
have any values, so they cannot used as indexes. In thruth, if we analyze the values, we can
characterize an exhaustive interval, but, to do this, we need to considers the cotextual values and
picoSQL do not do this.

picoSQL - SQL language 26/26

